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observations on the pressure dependence of proton chemical 
shifts of organic compounds. lb 'd The results were qualitatively 
discussed in terms of the pressure effect on the intermolecular 
interactions. Since we are using the internal referencing system 
throughout this experiment with a reference compound dis­
solved in a sample solution and subjected to the influence of 
the same high pressure, the only detectable pressure effect is 
the difference of the pressure effects on the chemical shifts 
between the sample and reference compounds, to which we 
refer hereafter as the "relative pressure shift", 5A. Although 
the relative pressure shifts of the proton resonances are shown 
to be generally small lb 'd and are the order of magnitude 1-5 
X 10 - 2 ppm under the increased pressures up to 2000 kg cm - 2 , 
our technique to measure the shifts with a considerable accu-
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racy of ±3 X 1O-3 ppm (with a 60-MHz spectrometer) or that 
of ±1 X 10-3 ppm (with a 100-MHz spectrometer used in the 
present study) proved to be satisfactory in detecting the small 
differences of the shifts between differently behaving protons 
on the molecules and was shown to be useful in the study of 
intermolecular interactions at high pressure. The present report 
represents an effort to examine the effect of the increased 
pressure on the chemical shift of the aromatic ring proton lo­
cated ortho to the substituent which might sterically hinder 
the approach of the medium molecules to the ortho proton. We 
have chosen the nearly spherically symmetric substituents for 
the present purpose. For the molecule having a disk-shaped 
substituent, a possibility may arise that the effect of pressure 
causes alteration in the dihedral angle between a plane of the 
substituent and that of the benzene ring. We will expand on 
this point in another paper. 

Together with benzene or p-xylene as an internal reference 
compound, 1,4-disubstituted benzenes were mainly used as the 
sample because of the simplicity of their ring proton spectra. 
Bromobenzene-3,5-^2 was also employed as an example of 
monosubstituted benzene. The proton spectra of the bromo-
benzene-i,5-^2 consisted of two slightly broadened signals3 

which were readily assigned to the ring protons ortho and para 
to the bromine substituent. «-Hexane was our first choice of 
the solvent and was used throughout this study. We chose this 
for two reasons: (i) it does not solidify at high pressure and 
room temperature; and (ii) as to the solvent effect on the proton 
chemical shift, only the so-called van der Waals interaction 
plays the major part and this reduces the factors contributing 
to the pressure dependence of the chemical shift. 

Experimental Section 
All the materials were purified finally by fractionation or by re-

crystallization and identified with their physical constants and proton 
NMR spectra. «-Hexane was purified4 by shaking it several times with 
concentrated sulfuric acid, then with a 0.1 N solution of potassium 
permanganate in 10% sulfuric acid, and finally with a 0.1 N solution 
of permanganate in 10% sodium hydroxide. It was then washed with 
water, dried over sodium hydroxide pellets, and fractionally distilled 
in a 30-cm Widmer fractionating column. The fraction boiling be­
tween 66.0 and 68.0 0C was used. Bromobenzene-.2,5-^2 was prepared 
according to the method reported by,R. I. Akawie et al.5 Usually 4 
mol % of substituted benzene sample was dissolved in n-hexane along 
with 1 mol % of benzene as an internal reference/ Measurements on 
more dilute solutions, containing 1.8 mol % of substituted benzene and 
0.2 mol % of benzene, were also carried out for 1-,4-dibromobenzene 
and for bromobenzene-i,5-</2 to examine the concentration depen­
dence of the relative pressure shift. No significant change was observed 
in the relative pressure shift on dilution. Accordingly, the present data 
based on the 5 mol % solutions may be considered to represent the 
pressure dependence of the chemical shift for substituted benzenes 
at infinite dilution in rt-hexane. When complications arose from the 
overlapping of the sample and reference signals, p-xylene was used 
as an internal reference. This relative pressure shift was converted to 
the benzene reference scale by measuring thep-xylene relative shift 
against benzene. The validity of the procedure was confirmed for 
samples which admit both benzene and p-xylene as reference. 

The high-pressure equipment was the same as that described in the 
previous reportlde except for some minor improvements. For example, 
the design of the PTFE safety jacket to hold the pressure resisting glass 
cellle was improved to fit the 100-MHz NMR probe. A high-pressure 
high-resolution NMR experiment was safely conducted on a Jeol 
PS-100 high-resolution spectrometer operating at 100 MHz and 
equipped with a standard high-resolution NMR probe and with a 
variable temperature controller. The continuous wave (CW) operation 
was used, while the field control was effected by means of the two-
sample system (external) NMR lock. Prior to a measurement at a 
fixed pressure, the temperature was directly read in a thermometer 
held in a PTFE jacket, which was settled in the NMR probe. Thus the 
temperature of the sample under the NMR condition was estimated 
to be maintained at 34.8 ± 0.2 0C throughout the experiment. Relative 
chemical shifts were determined by means of the linear interpolation 
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Figure 1. Pressure dependence of the ring proton chemical shifts, <5, of (i) 
alkylbenzenes and (ii) halobenzenes relative to the internal benzene res­
onance. The dotted line represents the pressure dependence corrected for 
the A(TE(Z*) contribution (see text). Relative pressure shifts 5A, in hertz 
caused by the compression of the sample up to 2000 kg cm-2 are given in 
parentheses. Relative pressure shifts corrected for the ±OE(P) contribution 
are noted with a superscript a. 

between known audio-frequency sidebands, which were calibrated 
to 0.01 Hz with the aid of a frequency counter. The accuracy for the 
measured relative chemical shifts was in general ±0.1 Hz and for 
bromobenzene-5,5-£/2 ±0.2 Hz for 10-15 repeated measurements at 
a fixed pressure of up to 2000 kg cm-2. 

Results and Discussion 
The pressure dependence of the ring proton chemical shifts 

relative to benzene (broken line) as an internal reference is 
shown in Figure 1. It is important to remember that the ref­
erence benzene molecule also feels the effect of pressure and 
hence, when viewed from the absolute standard, its resonance 
prbbably is shifted toward low field with increasing pressure 
for the reason discussed later. It can be seen from Figure 1 that 
the ring protons ortho to the substituent show progressive shifts 
with increasing pressure toward high field relative to the 
benzene resonance. 

Since the pressure effect on the chemical shift arises from 
the intensified interaction between the resonating proton and 
medium molecules, the variation of the pressure dependence 
with substituents can certainly be attributed to the difference 
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Figure 2. Schematic representation of the dependence of the o-w contri­
bution on the intermolecular separation r. 

in the ability of the substituent to affect the proton-medium 
interaction. Therefore we shall examine the present observa­
tions in terms of the medium effects on the NMR chemical 
shifts. Generally the medium effects can be divided into five 
contributions:6 

^medium = (Tb + Ca + Cw + CE + 0"H ( 1 ) 

Under the present experimental conditions employing (a) the 
internal referencing system and (b) sufficiently dilute solution 
in nonpolar, magnetically nearly isotropic n-hexane, eq 1 may 
well be simplified to the form 

^medium = "w + CE ( 2 ) 

where aw denotes the contribution arising from the weak van 
der Waals interaction between the resonating proton and 
medium molecules and <TE represents the effect due to the po­
larization of the C-H bond caused by the so-called reaction 
field. Assuming that the compression of the liquid sample ex­
erts influence both on the <rw and on the CTE term, the absolute 
pressure dependence of the chemical shift, A, viewed from a 
fictitious 1-atm reference, which is equivalent to an external 
1-atm reference with bulk susceptibility correction, can be 
described as 

A = A,TW(P) + A(TE(P) (3) 

in which A<rw(P) and Aa^(P) represents a change in the cor­
responding (T due to compression of the sample from 1 atm to 
an elevated pressure P. The observed relative pressure shift, 
oA, is then expressed in terms of the structural effect (sub­
stituent effect) on the A(Tw(P) term and the ACTE(P) term. 

(5A = [AOw(P)5amp]e ~ A<Tw(P)ref] + [A(TR(P) sample 

- A<TE(P)ref] ( 4 ) 

Figure 1 clearly shows that the observed 6A for the ortho 
proton depends largely on the size, and not on the polarity of 
the substituent; there is a steady rise in the 5A as the substituent 
size becomes larger. This suggests strongly that the 5A should 
be interpreted in terms of the "steric" part of the substituent 
effect and therefore be mostly accounted for by the contribu­
tion of the A(Tw(P) term. While it is not possible at present to 
make a priori evaluation of the substituent steric effect on the 
AiTw(P) contribution, further support for this view will come 
from the calculation of the ACTE(P) contribution, which will 
be shown to be rather small. For the contribution of CTW, at the 
ordinary pressure, an order of the magnitude —0.2 ppm has 
been estimated for some simple organic molecules from the 
observed difference between the chemical shift of a gaseous 
sample and that of the sample dissolved in a nonpolar solvent.6-7 

Since ov is approximately proportional to the inversed sixth 
powers of the intermolecular separation,7c-8 compression of the 
liquid sample from the ordinary to the higher pressure should 
also result in the increased contribution of aw, which causes 
a low-field shift of the resonating proton. The bulky substituent 
ortho to the proton, however, may interfere partly with the 
approach of medium molecules to that proton and suppresses 

the increase of the <rw contribution at high pressure:9 

|A f f w (P )o r tho | < I A(Tw(P) 

benzene I ( 5 ) 

This results in a progressively increasing difference, with in­
creasing pressure, between Aa-w(P)ortho and A<rw(P)benzene, 
giving rise to a positive (high-field) contribution to 6A for the 
substituted benzene. This condition may be schematically il­
lustrated in Figure 2, where the contribution of the (rw term was 
related to the intermolecular separation in the gaseous state, 
ro, at ordinary pressure, ri, and at high pressure, rp. For sim­
plicity, linear dependence of the crw contribution to r~b was 
assumed neglecting the correction term for the "site factors".70 

b\ and Sp explains effect of the substituent X on the <rw con­
tribution at ordinary pressure and at high pressure, respec­
tively. 

It can be noted in Figure l(i) that the ring protons of 4-
/err-butyltoluene ortho and meta to the methyl group show 
quite similar pressure dependence to that of p-xylene and of 
l,4-di-?ev7-butylbenzene, respectively. This clearly indicates 
that the size of the meta substituent has no influence on the 
A(Tw(P) contribution and that the steric effect of the meta 
substituent can well be neglected. 

We may now consider contribution of the A(TE(P) term, the 
magnitude of which may be experimentally evaluated in the 
case of para proton resonance of bromobenzene-5,5-^2. since 
the steric effect of the bromine substituent on the para position 
is sufficiently small and only the A(TE(P) plays a decisive role 
in contributing to the oA. 

<5Apara = [A<TE(P)para — A(TE(P)benzenc] 

We can assume 

A c E ( P ) b e n z e n e — 0 

0 A p a r a ^ A f f E ^ p a r a ( 6 ) 

Thus, from Figure l(ii), we can estimate a A(TE(2000) con­
tribution of —0.7 X 10-2 ppm due to the compression up to 
2000 kg cm-2 for the para proton of bromobenzene. We might 
also be able to estimate the magnitude of this contribution by 
the use of Buckingham's electric field theory." The theory 
relates CE to the reaction field, which can be expressed in terms 
of the dielectric constant« of the solvent, the dipole moment 
H of the solute and the polarizability a of the solute. Assuming 
that the AO-E(P) mainly arises from a change in e due to the 
increased density at high pressure and using 6 = 1.880 and e 
= 2.062 for w-hexane'2 at atmospheric pressure and at 2000 
kg cm -2, respectively, A<TE(2000) for the para proton reso­
nance of bromobenzene with /x/a = 1.3 X 105 is calculated to 
be —0.5 X 10-2 ppm. The agreement with the experimental 
value of —0.7 X 10-2 ppm is quite satisfactory and justifies the 
use of Buckingham's approximation hereafter. 

For the ortho proton of bromobenzene, for which the reac­
tion field vector gives a shielding effect, we can calculate 
A<TE(2000) = 0.2 X 10-2 ppm or 0.2 Hz at v0 = 100 MHz, 
which is 10 ~ 15% of the observed oA and is small enough to 
be masked by the van der Waals term, A<rw(P). 

The electric quadrupole moment 6 of 1,4-disubstituted 
benzene also polarizes the surrounding medium and this gen­
erates the reaction field. Thus Buckingham, Schaefer, and 
Schneider6 have made an estimate CTE = —0.08 ppm for 1,4-
dinitrobenzene in n-hexane at ordinary pressure. Assuming 
that 8 for 1,4-dibromobenzene and 1,4-diiodobenzene is less 
than that for 1,4-dinitrobenzene by a factor of 2.5 and the ra­
dius of the molecule/- = 3.5 A, we can estimate A(TE(2000) = 
—0.4 X 1O-2 ppm for these molecules. This again seems to be 
overshadowed by the Acrw(P) contribution in the observed 
positive dA. For 1,4-diiodobenzene with a larger radius than 
that for either 1,4-dibromo- or 1,4-dinitrobenzene, a much 
smaller A<TE(P) contribution is actually expected. In Figure 
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1 (ii), dotted lines for the halobenzenes represent the pressure 
dependence of ring proton resonance corrected for the ACTE(-P) 
contribution, that is the pressure dependence which might be 
related exclusively to the steric effect of the substituent ortho 
to the resonating proton. It can be seen that the dotted line for 
the ortho proton of bromobenzene-5,5-<f2 behaves almost 
identically with that for the ring proton of 1,4-dibromobenzene. 
This is consistent with the foregoing aspect that the meta 
substituent does not contribute to the Acr^iP) term and con­
stitutes further support for the validity of present estimations 
on the A(TE(P) contribution. Since the quadrupole moments 
of 1,4-dialkylbenzenes and the dipole moment of A-tert-
butyltoluene are extremely small, the A(TE(Z") contributions 
in these molecules become even much smaller and may be 
safely neglected. 

We thus arrive at the view that the observed 5A for the ortho 
proton is largely accounted for in terms of the contribution of 
<rw, which varies depending on the extent of the substituent 
steric effect to hinder the approach of the medium molecule 
to the resonating proton. In this respect, the measurement of 
the <5A is expected to offer a means of experimentally estab­
lishing a measure of the "steric effect" of the ortho substituent, 
quantitative evaluation of which might otherwise be really 
difficult. 

The present observation of the substituent steric effect on 
the crw contribution at high pressure indicates that a similar 
effect must basically exist even at the ordinary pressure (5i in 
Figure 2) and suggests that this effect, in studying the ortho 
substituent effect on the ring proton resonance,313 should be 
taken into account as an additional factor in the SCS (sub­
stituent chemical shift) other than the electronic (polar) as well 
as the magnetic anisotropy effect of the substituent.14 
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spectroscopy.2 The two most stable forms of each ester, des­
ignated extended and compact, have the syn-anti [T] (OCOC) 
= 0°, T2(COCC) = 180°] and syn-gauche [r, (OCOC) = 0°, 
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Abstract: Low resolution microwave spectra of propargyl cyanoformate and propargyl trifluoroacetate each display three a-
type band series characterized by B + C values of 1935 (3), 2253 (1), and 2142 (1) MHz for propargyl cyanoformate and 1342 
(2), 1507 (1), and 1467 (3) MHz for propargyl trifluoroacetate, associated with three conformational forms designated ex­
tended, compact, and intermediate. Propargyl fluoroformate and chloroformate display band spectra from two conformational 
forms with B + C values of 2515 (1) and 3175 (1) MHz for the fluoroformate and 1938 (2) and 2280 (2) (2235 (2), 37Cl) for 
the chloroformate, designated extended and compact. For each compound the extended species is consistent with a syn-anti 
[TI (OCOC) = 0°, T2(COCC) = 180°)] heavy atom planar structure and the compact species with a syn-gauche [T;(OCOC) 
= 0°, T2(COCC) ~ 90°)] structure. The intermediate forms of propargyl cyanoformate and trifluoroacetate are both consis­
tent with a gauche-gauche [TI (OCOC) ~ 60°, T2(COCC) ~ 270°] structure. The extended and compact forms are of nearly 
equal energy in all cases. The intermediate forms of propargyl cyanoformate and trifluoroacetate are approximately 1-2 kcal/ 
mol higher in energy. These results parallel previous findings for ethyl esters, demonstrating that the potential functions for 
internal rotation in ethyl and propargyl esters are similar. 
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